domingo, 16 de diciembre de 2012

OTRO CONCEPTO DE ELECTRICIDAD

La electricidad (del griego ήλεκτρον elektron, cuyo significado es ámbar) es el conjunto de fenómenos físicos relacionados con la atracción de cargas negativas o positivas. Se manifiesta en una gran variedad de fenómenos conocidos como la iluminación, electricidad estática, inducción electromagnética y el flujo de corriente eléctrica.1 2 3 4 La electricidad es tan versátil que tiene un sinnúmero de aplicaciones que incluyen el transporte, climatización, iluminación y computación. La electricidad es la columna de la industria moderna, y se espera que se mantenga así en un futuro cercano.5 Índice [ocultar] 1 Historia de la electricidad 2 Conceptos 2.1 Carga eléctrica 2.2 Corriente eléctrica 2.3 Campo eléctrico 2.4 Potencial eléctrico 2.5 Electromagnetismo 3 Circuitos 4 Propiedades eléctricas de los materiales 4.1 Origen microscópico 4.2 Conductividad y resistividad 5 Producción y usos de la electricidad 5.1 Generación y transmisión 5.2 Aplicaciones de la electricidad 6 Electricidad en la naturaleza 6.1 Mundo inorgánico 6.1.1 Descargas eléctricas atmosféricas 6.1.2 Campo magnético terrestre 6.2 Mundo orgánico 6.2.1 Impulso nervioso 6.2.2 Uso biológico 7 Véase también 8 Referencias 9 Bibliografía 10 Enlaces externos Historia de la electricidad Michael Faraday relacionó el magnetismo con la electricidad. Artículo principal: Historia de la electricidad. La historia de la electricidad como rama de la física comenzó con observaciones aisladas y simples especulaciones o intuiciones médicas, como el uso de peces eléctricos en enfermedades como la gota y el dolor de cabeza, u objetos arqueológicos de interpretación discutible, como la batería de Bagdad.6 Tales de Mileto fue el primero en observar los fenómenos eléctricos cuando, al frotar una barra de ámbar con un paño, notó que la barra podía atraer objetos livianos.2 4 Mientras la electricidad era todavía considerada poco más que un espectáculo de salón, las primeras aproximaciones científicas al fenómeno fueron hechas en los siglos XVII y XVIII por investigadores sistemáticos como Gilbert,7 von Guericke,8 Henry Cavendish,9 10 Du Fay,11 van Musschenbroek12 y Watson.13 Estas observaciones empiezan a dar sus frutos con Galvani,14 Volta,15 Coulomb16 y Franklin,17 y, ya a comienzos del siglo XIX, con Ampère,18 Faraday19 y Ohm.20 No obstante, el desarrollo de una teoría que unificara la electricidad con el magnetismo como dos manifestaciones de un mismo fenómeno no se alcanzó hasta la formulación de las ecuaciones de Maxwell en 1865.21 Los desarrollos tecnológicos que produjeron la primera revolución industrial no hicieron uso de la electricidad. Su primera aplicación práctica generalizada fue el telégrafo eléctrico de Samuel Morse (1833), que revolucionó las telecomunicaciones.22 La generación masiva de electricidad comenzó cuando, a fines del siglo XIX, se extendió la iluminación eléctrica de las calles y las casas. La creciente sucesión de aplicaciones que esta forma de la energía produjo hizo de la electricidad una de las principales fuerzas motrices de la segunda revolución industrial.23 Fue éste el momento de grandes inventores como Gramme,24 Westinghouse,25 von Siemens26 y Alexander Graham Bell.27 Entre ellos destacaron Nikola Tesla y Thomas Alva Edison, cuya revolucionaria manera de entender la relación entre investigación y mercado capitalista convirtió la innovación tecnológica en una actividad industrial.28 29 Conceptos Carga eléctrica Interacciones entre cargas de igual y distinta naturaleza. La carga en un electroscopio causa que las láminas se repelan entre sí. Artículo principal: Carga eléctrica. La carga eléctrica es una propiedad de la materia que produce una fuerza cuando tiene cerca otra materia cargada eléctricamente. La carga se origina en el átomo, el cual tiene portadores muy comunes que son el electrón y el protón. Es una cantidad conservadora, es decir, la carga neta de un sistema aislado se mantendrá constante, a menos que una carga externa se desplace a ese sistema. 30 En el sistema, la carga puede transferirse entre los cuerpos por contacto directo, o al pasar por un material conductor, como un cable. 31 El término electricidad estática hace referencia a la presencia de carga en un cuerpo, por lo general causado por que dos materiales distintos se frotan entre sí, transfiriéndose carga uno al otro. 32 La presencia de carga da lugar a la fuerza electromágnetica: una carga ejerce una fuerza sobre las otras, un efecto que era conocido en la antigüedad, pero no comprendido. 33 Una bola liviana, suspendida de un hilo, podía cargarse al contacto con una barra de vidrio cargada previamente por fricción con un tejido. Se encontró que si una bola similar se cargaba con la misma barra de vidrio, se repelían entre sí. Este fenómeno fue investigado a finales del siglo XVIII por Charles-Augustin de Coulomb, que dedujo que la carga se manifiesta de dos formas opuestas.34 Este descubrimiento trajo el conocido axioma "objetos con la misma polaridad se repelen y con diferente polaridad se atraen".33 35 La fuerza actúa en las partículas cargadas entre sí, y además la carga tiene una tendencia a extenderse sobre una superficie conductora. La magnitud de la fuerza electromagnética, ya sea atractiva o repulsiva, se expresa por la ley de Coulomb, que relaciona la fuerza con el producto de las cargas y tiene una relación inversa al cuadrado de la distancia entre ellas.36 37 La fuerza electromagnética es muy fuerte, la segunda después de la interacción nuclear fuerte38 , con la diferencia que esa fuerza opera sobre todas las distancias. 39 En comparación con la débil fuerza gravitacional, la fuerza electromagnética que aleja a dos electrones es 1042 veces más grande que la atracción gravitatoria que los une.40 Las cargas de los electrones y de los protones tienen signos contrarios, además una carga puede ser expresada como positiva o negativa. Por convención, la carga que tiene electrones se asume negativa y la de los protones positiva, una costumbre que empezó con el trabajo de Benjamin Franklin.41 La cantidad de carga esta dada por el símbolo Q y se expresa en Culombios. 42 Los electrones tiene la misma carga de aproximadamente -1.6022×10-19 culombios. El protón tiene una carga que es igual y opuesta +1.6022×10-19 coulombios. La carga no sólo está presente en la materia, sino también por la antimateria, cada antipartícula tiene una carga igual y opuesta a su correspondiente partícula.43 La carga puede medirse de diferentes maneras, un instrumento muy antiguo es el electroscopio, que aunque todavía se usa para demostraciones en los salones de clase, ha sido superado por el electrómetro electrónico. 44 Corriente eléctrica Artículo principal: Corriente eléctrica. Un arco eléctrico provee una demostración energética de la corriente eléctrica Se conoce como corriente eléctrica al movimiento de cargas eléctricas. La corriente puede estar producida por cualquier partícula cargada eléctricamente en movimiento; lo más frecuente es que sean electrones, pero cualquier otra carga en movimiento producee una corriente.45 La intensidad de una corriente eléctrica se mide en amperios, cuyo símbolo es A. Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó como sentido convencional de circulación de la corriente el flujo de cargas desde el polo positivo al negativo. Más adelante se observó, que en los metales los portadores de carga son electrones, con carga negativa, y que se desplazan en sentido contrario al convencional.46 Lo cierto es que, dependiendo de las condiciones, una corriente eléctrica puede consistir de un flujo de partículas cargadas en una dirección, o incluso en ambas direcciones al mismo tiempo. La convención positivo-negativo es ampliamente usada para simplificar esta situación.45 El proceso por el cual la corriente eléctrica circula por un material se llama conducción eléctrica, y su naturaleza varía dependiendo de las partículas cargadas y el material por el cual están circulando. Son ejemplos de corrientes eléctricas la conducción metálica, donde los electrones recorren un conductor eléctrico, como el metal, y la electrólisis, donde los iones (átomos cargados) fluyen a través de líquidos. Mientras que las partículas pueden moverse muy despacio, algunas veces con una velocidad media de deriva de sólo fracciones de milímetro por segundo,31 el campo eléctrico que las controla se propaga cerca a la velocidad de la luz, permitiendo que las señales eléctricas se transmitan rápidamente por los cables.47 La corriente produce muchos efectos visibles, que han hecho que se reconozca su presencia a lo largo de la historia. En 1800, Nicholson y Carlisle descubrieron que el agua podía descomponerse por la corriente de una pila voltaica en un proceso que se conoce como electrólisis; trabajo que posteriormente fue ampliado por Michael Faraday en 1833.48 La corriente a través de una resistencia eléctrica produce un aumento de la temperatura, un efecto que James Prescott Joule estudió matemáticamente en 1840 (ver efecto Joule). 48 Campo eléctrico Líneas de campo saliendo de una carga positiva hacia un conductor plano. Artículo principal: Campo eléctrico. El concepto de campo eléctrico fue introducido por Michael Faraday. Un campo eléctrico se crea por un cuerpo cargado en el espacio que lo rodea, y produce una fuerza que ejerce sobre otras cargas que están ubicadas en el campo. Un campo eléctrico actúa entre dos cargas de modo muy parecido al campo gravitacional que actúa sobre dos masas, y como tal, se extiende hasta el infinito y su valor es inversamente proporcional al cuadrado de la distancia.39 Sin embargo, hay una diferencia importante: así como la gravedad siempre actúa como atracción, que el campo eléctrico puede producir atracción o repulsión. Si un cuerpo grande como un planeta no tienen carga neta, el campo eléctrico a una distancia determinada es cero. Por ello la gravedad es la fuerza dominante en el universo, a pesar de ser mucho más débil. 40 Un campo eléctrico varía en el espacio, y su fuerza en cualquier punto se define como la fuerza (por unidad de carga) que se necesita para que una carga esté inmóvil en ese punto. 49 La carga de prueba debe de ser insignificante para evitar que su propio campo afecte el campo principal y también debe ser estacionaria para evitar el efecto de los campos magnéticos. Como el campo eléctrico se define en términos de fuerza, y una fuerza es un vector, entonces el campo eléctrico también es un vector, con magnitud y dirección. Específicamente, es un campo vectorial. 49 Potencial eléctrico Un par de pilas AA. El signo + indica la polaridad de la diferencia de potencial entre las terminales de la batería. Artículo principal: Potencial eléctrico. El concepto de potencial eléctrico tiene mucha relación con el campo eléctrico. Una caga pequeña ubicada en un campo eléctrico experimenta una fuerza, y para haber llevado esa carga a ese punto en contra de la fuerza se necesito trabajo. El potencial eléctrico en cualquier punto se define como la energía requerida para mover una carga de prueba ubicada en el infinito a ese punto.50 Por lo general se mide en voltios, donde un voltio es el potencia en el que un julio (unidad) de trabajo debe gastarse para traer una carga de un culombio del infinito. Esta definición formal de potencial tiene una aplicación práctica, aunque un concepto más útil es el de diferencia de potencial, y es la energía requerida para mover una carga entre dos puntos específicos. El campo eléctrico tiene la propiedad especial de ser conservativo, es decir que no importa la trayectoria realizada por la carga de prueba; todas las trayectorias de dos puntos específicos consumen la misma energía, y además con un único valor de diferencia de potencial. 50 El voltio está tan identificado como la unidad de elección de medida y descripción de la diferencia de potencial que el término voltaje se usa frecuentemente en la vida diaria. Electromagnetismo Fluido ferroso que se agrupa cerca de los polos de un imán o magneto. El motor eléctrico aprovecha un efecto importante del electromagnetismo: una corriente a través de un campo magnético experimenta una fuerza en el mismo ángulo del campo y la corriente. Artículo principal: Electromagnetismo. Se denomina electromagnetismo a la teoría física que unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos son obra de Faraday, pero fueron formulados por primera vez de modo completo por Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales, conocidas como ecuaciones de Maxwell, que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales: densidad de carga eléctrica, corriente eléctrica, desplazamiento eléctrico y corriente de desplazamiento. A principios del siglo XIX Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. A partir de esa base Maxwell unificó en 1861 los trabajos de físicos como Ampère, Sturgeon, Henry, Ohm y Faraday, en un conjunto de ecuaciones que describían ambos fenómenos como uno solo, el fenómeno electromagnético. Se trata de una teoría de campos; las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales y son dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los que intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre la materia. Para la descripción de fenómenos a nivel molecular, atómico o corpuscular, es necesario emplear las expresiones clásicas de la energía electromagnética conjuntamente con las de la mecánica cuántica. Ecuaciones de Maxwell, en su forma diferencial Nombre de la ley Forma diferencial Ley de Gauss Ley de Gauss para el magnetismo o inexistencia del monopolo magnético Ecuación de Maxwell-Faraday (ley de Faraday) Ley de Ampère-Maxwell   Las ecuaciones de Maxwell describen los campos eléctricos y magnéticos como manifestaciones de un solo campo electromagnético. Además, explican la naturaleza ondulatoria de la luz como parte de una onda electromagnética.51 Al contar con una teoría unificada consistente que describiera estos dos fenómenos antes separados, se pudieron realizar varios experimentos novedosos e inventos muy útiles, como el generador de corriente alterna inventado por Tesla.52 El éxito predictivo de la teoría de Maxwell y la búsqueda de una interpretación coherente con el experimento de Michelson y Morley llevó a Einstein a formular la teoría de la relatividad, que se apoyaba en algunos resultados previos de Lorentz y Poincaré. Esta unificación es fundamental para describir las relaciones que existen entre los campos eléctricos variables que se utilizan en la vida diaria —como la corriente alterna utilizada en las redes eléctricas domésticas— y los campos magnéticos que inducen. Entre otras aplicaciones técnicas, se utiliza para el cálculo de antenas de telecomunicaciones y de circuitos eléctricos o electrónicos en los que hay campos eléctricos y magnéticos variables que se generan mutuamente. Véanse también: Inducción magnética, Ley de Faraday, Onda electromagnética y Fotón. Circuitos Un circuito eléctrico básico. La fuente de tensión V en la izquierda provee una corriente I al circuito, entregándole energía eléctrica al resistor R. Del resistor, la corriente regresa a la fuente, completando el circuito. Artículos principales: Circuito eléctrico y Análisis de circuitos. Un circuito eléctrico es una interconexión de componentes eléctricos tales que la carga eléctrica fluye en un camino cerrado, por lo general para ejecutar alguna tarea útil. Los componentes en un circuito eléctrico pueden ser muy variados, puede tener elementos como resistores, capacitores, interruptores, transformadores y electrónicos. Los circuitos electrónicos contienen componentes activos, normalmente semiconductores, exhibiendo un comportamiento no lineal, necesitando análisis complejos. Los componentes eléctricos más simples son los pasivos y lineales. El comportamiento de los circuitos eléctricos que contienen solamente resistencias y fuentes electromotrices de corriente continua está gobernado por las Leyes de Kirchoff. Para estudiarlo, el circuito se descompone en mallas eléctricas, estableciendo un sistema de ecuaciones lineales cuya resolución brinda los valores de los voltajes y corrientes que circulan entre sus diferentes partes. La resolución de circuitos de corriente alterna requiere la ampliación del concepto de resistencia eléctrica, ahora ampliado por el de impedancia para incluir los comportamientos de bobinas y condensadores. La resolución de estos circuitos puede hacerse con generalizaciones de las leyes de Kirchoff, pero requiere usualmente métodos matemáticos avanzados, como el de Transformada de Laplace, para describir los comportamientos transitorios y estacionarios de los mismos. Propiedades eléctricas de los materiales Configuración electrónica del átomo de cobre. Sus propiedades conductoras se deben a la facilidad de circulación que tiene su electrón más exterior (4s). Origen microscópico La posibilidad de generar corrientes eléctricas en los materiales depende de la estructura e interacción de los átomos que los componen. Los átomos están constituidos por partículas cargadas positivamente (los protones), negativamente (los electrones) y neutras (los neutrones). La conducción eléctrica de los materiales sólidos, cuando existe, se debe a los electrones de la órbita exterior, ya que tanto los electrones interiores como los protones de los núcleos atómicos no pueden desplazarse con facilidad. Los materiales conductores por excelencia son metales, como el cobre, que usualmente tienen un único electrón en la última capa electrónica. Estos electrones pueden pasar con facilidad a átomos contiguos, constituyendo los electrones libres responsables del flujo de corriente eléctrica. En otros materiales sólidos los electrones se liberan con dificultad constituyendo semiconductores, cuando la liberación puede ser producida por excitación térmica, o aisladores, cuando no se logra esta liberación. Los mecanismos microscópicos de conducción eléctrica son diferentes en los materiales superconductores y en los líquidos. En los primeros, a muy bajas temperaturas y como consecuencia de fenómenos cuánticos, los electrones no interaccionan con los átomos desplazándose con total libertad (resistividad nula). En los segundos, como en los electrólitos de las baterías eléctricas, la conducción de corriente es producida por el desplazamiento de átomos o moléculas completas ionizadas de modo positivo o negativo. Los materiales superconductores se usan en imanes superconductores para la generación de elevadísimos campos magnéticos. En todos los materiales sometidos a campos eléctricos se modifican, en mayor o menor grado, las distribuciones espaciales relativas de las cargas negativas (electrones) y positivas (núcleos atómicos). Este fenómeno se denomina polarización eléctrica y es más notorio en los aisladores eléctricos debido a la ausencia de apantallamiento del campo eléctrico aplicado por los electrones libres. Conductividad y resistividad Conductor eléctrico de cobre. Artículos principales: Conductividad eléctrica y Resistividad. La conductividad eléctrica es la propiedad de los materiales que cuantifica la facilidad con que las cargas pueden moverse cuando un material es sometido a un campo eléctrico. La resistividad es una magnitud inversa a la conductividad, aludiendo al grado de dificultad que encuentran los electrones en sus desplazamientos, dando una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor. Generalmente la resistividad de los metales aumenta con la temperatura, mientras que la de los semiconductores disminuye ante el aumento de la temperatura. Los materiales se clasifican según su conductividad eléctrica o resistividad en conductores, dieléctricos, semiconductores y superconductores. Conductores eléctricos. Son los materiales que, puestos en contacto con un cuerpo cargado de electricidad, transmiten ésta a todos los puntos de su superficie. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad, como son el grafito, las soluciones salinas (por ejemplo, el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal más empleado es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho menos denso, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.53 Dieléctricos. Son los materiales que no conducen la electricidad, por lo que pueden ser utilizados como aislantes. Algunos ejemplos de este tipo de materiales son vidrio, cerámica, plásticos, goma, mica, cera, papel, madera seca, porcelana, algunas grasas para uso industrial y electrónico y la baquelita. Aunque no existen materiales absolutamente aislantes o conductores, sino mejores o peores conductores, son materiales muy utilizados para evitar cortocircuitos (forrando con ellos los conductores eléctricos, para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que, de tocarse accidentalmente cuando se encuentran en tensión, pueden producir una descarga) y para confeccionar aisladores (elementos utilizados en las redes de distribución eléctrica para fijar los conductores a sus soportes sin que haya contacto eléctrico). Algunos materiales, como el aire o el agua, son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, es aislante a temperatura ambiente pero, bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor. La conductividad se designa por la letra griega sigma minúscula () y se mide en siemens por metro, mientras que la resistividad se designa por la letra griega rho minúscula (ρ) y se mide en ohms por metro (Ω•m, a veces también en Ω•mm²/m). Producción y usos de la electricidad Generación y transmisión La energía eólica está tomando importancia en muchos países. Artículo principal: Red eléctrica. Hasta la invención de la pila voltaica en el siglo XVIII (Volta, 1800) no se tenía una fuente viable de electricidad. La pila voltaica y su descendiente moderna, la batería eléctrica, almacenaba energía químicamente y la entregaba según la demanda en forma de energía eléctrica. La batería es una fuente común muy versátil que se usa para muchas aplicaciones, pero su almacenamiento de energía es limitado, y una vez descargado debe ser reemplazada o descargada. Para una demanda eléctrica mucho más grande la energía debe ser generada y transmitida continuamente sobre líneas de transmisión conductivas. Por lo general, la energía eléctrica se genera mediante generadores electromecánicos movidos por el vapor producido por combustibles fósiles, o por el calor generado por reacciones nucleares, o de otras fuentes como la energía cinética extraída del viento o el agua. La moderna turbina de vapor inventada por Charles Algernon Parsons en 1884 genera cerca del 80% de la energía eléctrica en el mundo usando una gran variedad de fuentes de calentamiento. Este generador no tiene ningún parecido al generador de disco homopolar de Faraday, aunque ambos funcionan bajo el mismo principio electromágnetico, que dice que al cambiar el campo magnético a un conductor produce una diferencia de potencial en sus terminales. La invención a finales del siglo XIX del transformador implicó transmitir la energía eléctrica de una forma más eficiente. La transmisión eléctrica eficiente hizo posible generar electricidad en plantas generadoras, para entonces ser trasportada a largas distancias, donde fuera necesaria. Debido a que la energía eléctrica no puede ser almacenada fácilmente para atender la demanda a una escala nacional, la mayoría de las veces se produce la misma cantidad que la que se demanda. Esto requiere de una bolsa eléctrica que hace predicciones de la demanda eléctrica, y mantiene una coordinación constante con las plantas generadoras. Una cierta cantidad de generación debe mantenerse en reserva para soportar cualquier anomalía en la red. La demanda de la electricidad crece con una gran rapidez si una nación se moderniza y su economía se desarrolla. Estados Unidos tuvo un aumento del 12% anual de la demanda en las tres primeras décadas del siglo XX, una tasa de crecimiento que es similar a las economías emergentes como India o China. Históricamente, la tasa de crecimiento de la demanda eléctrica ha superado a otras formas de energía. Las preocupaciones medioambientales con la generación de energía eléctrica han hecho que la producción se dirija a las energías renovables, en particular la energía eólica e hidráulica. Mientras el debate continúe sobre el impacto medioambiental de diferentes tipos de producción eléctrica, su forma final será relativamente limpia. Aplicaciones de la electricidad Artículo principal: Aplicaciones de la electricidad. La electricidad tiene un sinfín de aplicaciones tanto para uso doméstico, industrial, medicinal y en el transporte. Solo para citar se puede mencionar a la electrónica, Generador eléctrico, Motor eléctrico, Transformador, Maquinas frigoríficas, aire acondicionado, electroimanes, Telecomunicaciones, Electroquímica, electrovalvulas, Iluminación y alumbrado, Producción de calor, Electrodomésticos, Robótica, Señales luminosas. También se aplica la inducción electromagnética para la construcción de motores movidos por energía eléctrica, que permiten el funcionamiento de innumerables dispositivos. Electricidad en la naturaleza Mundo inorgánico Descargas eléctricas atmosféricas El fenómeno eléctrico más común del mundo inorgánico son las descargas eléctricas atmosféricas denominadas rayos y relámpagos. Debido al rozamiento de las partículas de agua o hielo con el aire, se produce la creciente separación de cargas eléctricas positivas y negativas en las nubes, separación que genera campos eléctricos. Cuando el campo eléctrico resultante excede el de ruptura dieléctrica del medio, se produce una descarga entre dos partes de una nube, entre dos nubes diferentes o entre la parte inferior de una nube y tierra. Esta descarga ioniza el aire por calentamiento y excita transiciones electrónicas moleculares. La brusca dilatación del aire genera el trueno, mientras que el decaimiento de los electrones a sus niveles de equilibrio genera radiación electromagnética, luz. Son de origen similar las centellas y el fuego de San Telmo. Este último es común en los barcos durante las tormentas y es similar al efecto corona que se produce en algunos cables de alta tensión. El daño que producen los rayos a las personas y sus instalaciones puede prevenirse derivando la descarga a tierra, de modo inocuo, mediante pararrayos. Campo magnético terrestre Aurora boreal. Aunque no se puede verificar experimentalmente, la existencia del campo magnético terrestre se debe casi seguramente a la circulación de cargas en el núcleo externo líquido de la Tierra. La hipótesis de su origen en materiales con magnetización permanente, como el hierro, parece desmentida por la constatación de las inversiones periódicas de su sentido en el transcurso de las eras geológicas, donde el polo norte magnético es remplazado por el sur y viceversa. Medido en tiempos humanos, sin embargo, los polos magnéticos son estables, lo que permite su uso, mediante el antiguo invento chino de la brújula, para la orientación en el mar y en la tierra. El campo magnético terrestre desvía las partículas cargadas provenientes del Sol (viento solar). Cuando esas partículas chocan con los átomos y moléculas de oxígeno y nitrógeno de la magnetosfera, se produce un efecto fotoeléctrico mediante el cual parte de la energía de la colisión excita los átomos a niveles de energía tales que cuando dejan de estar excitados devuelven esa energía en forma de luz visible. Este fenómeno puede observarse a simple vista en las cercanías de de los polos, en las auroras polares. Mundo orgánico Artículo principal: Bioelectromagnetismo. El bioelectromagnetismo (a veces denominado parcialmente como bioelectricidad o biomagnetismo) es el fenómeno biológico presente en todos los seres vivos, incluidas todas las plantas y los animales, consistente en la producción de campos electromagnéticos (se manifiesten como eléctricos o magnéticos) producidos por la materia viva ( células, tejidos u organismos). Los ejemplos de este fenómeno incluyen el potencial eléctrico de las membranas celulares y las corrientes eléctricas que fluyen en nervios y músculos como consecuencia de su potencial de acción. No debe confundirse con la bioelectromagnética, que se ocupa de los efectos de una fuente externa de electromagnetismo sobre los organismos vivos. Véanse también: Bioenergética, Electrocito, Electroencefalografía, Electrofisiología, Electromiografía y Potencial de membrana. Impulso nervioso Artículo principal: Impulso nervioso. Grabado antiguo mostrando la excitación del nervio crural de una rana mediante una máquina electrostática. El fenómeno de excitación de los músculos de las patas de una rana, descubierto por Galvani, puso en evidencia la importancia de los fenómenos eléctricos en los organismos vivientes. Aunque inicialmente se pensó que se trataba de una clase especial de electricidad, se verificó gradualmente que estaban en juego las cargas eléctricas usuales de la física. En los organismos con sistema nervioso las neuronas son los canales por los que se trasmiten a los músculos las señales que mandan su contracción y relajación. Las neuronas también transmiten al cerebro las señales de los órganos internos, de la piel y de los transductores que son los órganos de los sentidos, señales como dolor, calor, textura, presión, imágenes, sonidos, olores y sabores. Los mecanismos de propagación de las señales por las neuronas, sin embargo, son muy diferentes del de conducción de electrones en los cables eléctricos. Consisten en la modificación de la concentración de iones de sodio y de potasio a ambos lados de una membrana celular. Se generan así diferencias de potencial, variables a lo largo del interior de la neurona, que varían en el tiempo propagándose de un extremo al otro de la misma con altas velocidades. Los pequeños hoyos en la cabeza de este lucio contiene neuromastos del sistema de la línea lateral. El pez torpedo es uno de los "fuertemente eléctricos". Véase también: Galvanismo. Uso biológico Artículo principal: Bioelectromagnetismo. Muchos peces y unos pocos mamíferos tienen la capacidad de detectar la variación de los campos eléctricos en los que están inmersos, entre los que se cuentan los teleostei, las rayas54 y los ornitorrincos. Esta detección es hecha por neuronas especializadas llamadas neuromastos,55 que en los gimnótidos están ubicadas en la línea lateral del pez.56 La localización por medios eléctricos (electrorrecepción) puede ser pasiva o activa. En la localización pasiva el animal sólo detecta la variación de los campos eléctricos circundantes, pero no los genera. Los "peces poco eléctricos" son capaces de generar campos eléctricos débiles gracias a órganos y circuitos especiales de neuronas, cuya única función es detectar variaciones del entorno y comunicarse con otros miembros de su especie. Los voltajes generados son inferiores a 1 V y las características de los sistemas de detección y control varían grandemente de especie a especie.57 Algunos peces, como las anguilas y las rayas eléctricas son capaces de producir grandes descargas eléctricas con fines defensivos u ofensivos, son los llamados peces eléctricos. Estos peces, también llamados "peces fuertemente eléctricos", pueden generar voltajes de hasta 2.000 V y corrientes superiores a 1 A. Entre los peces eléctricos se cuentan los Apteronotidae, Gymnotidae, Electrophoridae, Hypopomidae, Rhamphichthyidae, Sternopygidae, Gymnarchidae, Mormyridae y Malapteruridae.58 Véanse también: Magnetorrecepción, Paloma mensajera y Bacteria magnética. Véase también Anexo:Países por producción de electricidad Anexo:Países por consumo de electricidad Alta tensión Baja tensión Batería Cálculo de secciones de líneas eléctricas Electrotecnia Energía eléctrica Historia de la electricidad Mediciones eléctricas Riesgo eléctrico Sistema de suministro eléctrico Tensión eléctrica Termoelectricidad Electromecánica Nikola Tesla Referencias

No hay comentarios: