miércoles, 16 de marzo de 2011

LA RADIOACTIVIDAD

RadiactividadDe Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

Diagrama de Segrè. El color indica el periodo de semidesintegración de los isótopos radiactivos conocidos, también llamado semivida.La radiactividad o radioactividad es la emisión de energía por la desintegración de núcleos de átomos inestables. La energía emitida son partículas con carga eléctrica u ondas electromagnéticas, que ionizan el medio que atraviesan. Una excepción lo constituye el neutrón, que no posee carga, pero ioniza la materia en forma indirecta. En las desintegraciones radiactivas se tienen varios tipos de radiación: alfa, beta, gamma y neutrones.

También lo podemos definir como un fenómeno físico natural, por el cual algunos cuerpos o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, etc. Debido a esa capacidad se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como pueden ser núcleos de Helio, electrones o positrones, protones u otras. En resumen, es un fenómeno que ocurre en los núcleos de ciertos elementos, que son capaces de transformarse en núcleos de elementos de otros átomos.

La radiactividad es una propiedad de los isótopos que son "inestables". Es decir que se mantienen en un estado excitado en sus capas electrónicas o nucleares, con lo que para alcanzar su estado fundamental deben perder energía. Lo hacen en emisiones electromagnéticas o en emisiones de partículas con una determinada energía cinética. Esto se produce variando la energía de sus electrones (emitiendo rayos X), sus nucleones (rayo gamma) o variando el isótopo (al emitir desde el núcleo electrones, positrones, neutrones, protones o partículas más pesadas), y en varios pasos sucesivos, con lo que un isótopo pesado puede terminar convirtiéndose en uno mucho más ligero, como el Uranio que con el transcurrir de los siglos acaba convirtiéndose en plomo.

Es aprovechada para la obtención de energía, usada en medicina (radioterapia y radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades entre otras).

La radiactividad puede ser:

Natural: manifestada por los isótopos que se encuentran en la naturaleza.
Artificial o inducida: manifestada por los radioisótopos producidos en transformaciones artificiales.
Contenido [ocultar]
1 Radiactividad natural
2 Radiactividad artificial
3 Clases y componentes de radiación
3.1 Causa de la radiactividad
4 Símbolo
4.1 Contador Geiger
5 Periodo de semidesintegración radiactiva
6 Velocidad de desintegración
7 Ley de la radiosensibilidad
8 Consecuencias para la salud de la exposición a las radiaciones ionizantes
9 Riesgos para la salud
9.1 Dosis aceptable de irradiación
9.2 Dosis efectiva permitida
10 Ejemplos de isótopos radiactivos naturales
11 Ejemplos de isótopos radiactivos artificiales
12 Véase también
13 Referencias
14 Enlaces externos


[editar] Radiactividad naturalVéanse también: Radiactividad natural, Rayos cósmicos y Redradna
En 1896 Becquerel descubrió que ciertas sales de uranio emitían radiaciones espontáneamente, al observar que velaban las placas fotográficas envueltas en papel negro. Hizo ensayos con el mineral emamae, en frío, pulverizado, disuelto en ácidos y la intensidad de la misteriosa radiación era siempre la misma. Por tanto, esta nueva propiedad de la materia, que recibió el nombre de radiactividad, no dependía de la forma física o química en la que se encontraban los átomos del cuerpo radiactivo, sino que era una propiedad que radicaba en el interior mismo del átomo.

El estudio del nuevo fenómeno y su desarrollo posterior se debe casi exclusivamente al matrimonio Curie, quienes encontraron otras sustancias radiactivas como el torio, polonio y radio. La intensidad de la radiación emitida era proporcional a la cantidad de uranio presente, por lo que dedujo Marie Curie que la radiactividad era una propiedad atómica. El fenómeno de la radiactividad se origina exclusivamente en el núcleo de los átomos radiactivos. Se cree que la causa que lo origina es debida a la interacción neutrón-protón del mismo. Al estudiar la radiación emitida por el radio se comprobó que era compleja, pues al aplicarle un campo magnético parte de ella se desviaba de su trayectoria y otra parte no.

Pronto se vio que todas estas reacciones provenían del núcleo atómico que describió Rutherford en 1911, quien también demostró que las radiaciones emitidas por las sales de uranio eran capaces de ionizar el aire y de producir la descarga de cuerpos cargados eléctricamente.

Con el uso del neutrino, partícula descrita en 1930 por Pauli pero no medida hasta 1956 por Clyde Cowan y sus colaboradores, consiguió describirse la radiación beta.

En 1932 James Chadwick descubrió la existencia del neutrón que Wolfgang Pauli había predicho en 1930, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración eran en realidad neutrones.

[editar] Radiactividad artificialSe produce la radiactividad inducida cuando se bombardean ciertos núcleos estables con partículas apropiadas. Si la energía de estas partículas tiene un valor adecuado penetran dentro del núcleo bombardeado y forman un nuevo núcleo que, en caso de ser inestable, se desintegra después radiactivamente. Fue descubierta por los esposos Jean Frédéric Joliot-Curie e Irène Joliot-Curie, bombardeando núcleos de boro y aluminio con partículas alfa. Observaron que las sustancias bombardeadas emitían radiaciones después de retirar el cuerpo radiactivo emisor de las partículas de bombardeo.

En 1934 Fermi se encontraba en un experimento bombardeando núcleos de uranio con los neutrones recién descubiertos. En 1938, en Alemania, Lise Meitner, Otto Hahn y Fritz Strassmann verificaron los experimentos de Fermi. Es más, en 1939 demostraron que parte de los productos que aparecían al llevar a cabo estos experimentos era bario. Muy pronto confirmaron que era resultado de la división de los núcleos de uranio: la primera observación experimental de la fisión. En Francia, Jean Frédéric Joliot-Curie descubrió que además del bario, se emitían neutrones secundarios en esa reacción, haciendo factible la reacción en cadena.

También en 1932 Mark Oliphant teorizó sobre la fusión de núcleos ligeros (de hidrógeno), describiendo poco después Hans Bethe el funcionamiento de las estrellas en base a este mecanismo.

El estudio de la radiactividad permitió un mayor conocimiento de la estructura del núcleo atómico y de las partículas subatómicas. Se abre la posibilidad de convertir unos elementos en otros. Incluso el sueño de los alquimistas de transformar otros elementos en oro se hace realidad, aunque no resulte rentable.

[editar] Clases y componentes de radiación
Clases de radiación ionizante y cómo detenerla.
Las partículas alfa (núcleos de helio) se detienen al interponer una hoja de papel. Las partículas beta (electrones y positrones) no son capaces de atravesar una capa de aluminio. Sin embargo, los rayos gamma (fotones de alta energía) necesitan una barrera mucho más gruesa, pudiendo los más energéticos atravesar el plomo.Se comprobó que la radiación puede ser de tres clases diferentes, conocidas como partículas, desintegraciones y radiación:

1.Partícula alfa: Son flujos de partículas cargadas positivamente compuestas por dos neutrones y dos protones (núcleos de helio). Son desviadas por campos eléctricos y magnéticos. Son poco penetrantes aunque muy ionizantes. Son muy energéticos. Fueron descubiertas por Rutherford, que hizo pasar partículas alfa a través de un fino cristal y las atrapó en un tubo de descarga. Este tipo de radiación la emiten núcleos de elementos pesados situados al final de la tabla periódica (A >100). Estos núcleos tienen muchos protones y la repulsión eléctrica es muy fuerte, por lo que tienden a obtener N aproximadamente igual a Z, y para ello emite una partícula alfa. En el proceso se desprende mucha energía que se convierte en la energía cinética de la partícula alfa, por lo que estas partículas salen con velocidades muy altas.
2.Desintegración beta: Son flujos de electrones (beta negativas) o positrones (beta positivas) resultantes de la desintegración de los neutrones o protones del núcleo cuando este se encuentra en un estado excitado. Es desviada por campos magnéticos. Es más penetrante aunque su poder de ionización no es tan elevado como el de las partículas alfa. Por lo tanto cuando un átomo expulsa una partícula beta aumenta o disminuye su número atómico una unidad (debido al protón ganado o perdido). Existen tres tipos de radiación beta, la radiación Beta- que consiste en la emisión espontánea de electrones por parte de los núcleos; la Beta+ en la que un protón del núcleo se desintegra dando lugar a un neutrón, un positrón o partícula Beta+ y un neutrino; y por último la captura electrónica que se da en núcleos con exceso de protones en ella el núcleo captura un electrón de la corteza electrónica, que se unirá a un protón del núcleo para dar un neutrón.
3.Radiación gamma: Son ondas electromagnéticas. Es el tipo más penetrante de radiación. Al ser ondas electromagnéticas de longitud de onda corta, tienen mayor penetración y se necesitan capas muy gruesas de plomo u hormigón para detenerlas. En este tipo de radiación el núcleo no pierde su identidad, sino que se desprende de la energía que le sobra para pasar a otro estado de energía más baja emitiendo los rayos gamma, o sea fotones muy energéticos. Este tipo de emisión acompaña a las radiaciones alfa y beta. Al ser tan penetrante y tan energética, de los tres tipos de radiación es la más peligrosa.
Las leyes de desintegración radiactiva, descritas por Soddy y Fajans, son:

Cuando un átomo radiactivo emite una partícula alfa, la masa del átomo (A) resultante disminuye en 4 unidades y el número atómico (Z) en 2.
Cuando un átomo radiactivo emite una partícula beta, el número atómico (Z) aumenta o disminuye en una unidad y la masa atómica (A) se mantiene constante.
Cuando un núcleo excitado emite radiación gamma no varía ni su masa ni su número atómico, solo pierde una cantidad de energía hν (donde "h" es la constante de Planck y "ν" es la frecuencia de la radiación emitida).
Las dos primeras leyes indican que cuando un átomo emite una radiación alfa o beta se transforma en otro átomo de un elemento diferente. Este nuevo elemento puede ser radiactivo, transformándose en otro, y así sucesivamente, dando lugar a las llamadas series radiactivas.

[editar] Causa de la radiactividadEn general son radiactivas las sustancias que no presentan un balance correcto entre protones o neutrones, tal como muestra el gráfico al inicio del artículo. Cuando el número de neutrones es excesivo o demasiado pequeño respecto al número de protones se hace más difícil que la fuerza nuclear fuerte debida al efecto del intercambio de piones pueda mantenerlos unidos. Eventualmente el desequilibrio se corrige mediante la liberación del exceso de neutrones o protones, en forma de partículas α que son realmente núcleos de Helio, partículas β que pueden ser electrones o positrones. Estas emisiones llevan a dos tipos de radiactividad mencionados:

Radiación α, que aligera los núcleos atómicos en 4 unidades másicas, y cambia el número atómico en dos unidades.
Radiación β, que no cambia la masa del núcleo, ya que implica la conversión de un protón en un neutrón o viceversa, y cambia el número atómico en una sola unidad (positiva o negativa, según la partícula emitida sea un electrón o un positrón).
La radiación por su parte se debe a que el núcleo pasa de un estado excitado de mayor energía a otro de menor energía, que puede seguir siendo inestable y dar lugar a la emisión de más radiación de tipo α, β o γ. La radiación γ es por tanto un tipo de radiación electromagnética muy penetrante ya que tiene una alta energía por fotón emitido.

[editar] Símbolo
Símbolo utilizado tradicionalmente para indicar la presencia de radiactividad.
Nuevo símbolo de advertencia de radiactividad adoptado por la ISO en 2007 para fuentes que puedan resultar peligrosas. Estandard ISO #21482El 15 de marzo de 1994, la Agencia Internacional de la Energía Atómica dio a conocer un nuevo símbolo de advertencia de radiactividad con validez internacional. La imagen fue probada en 11 países.

[editar] Contador GeigerCuando una partícula radiactiva se introduce en un contador Geiger, produce un breve impulso de corriente eléctrica. La radiactividad de una muestra se calcula por el número de estos impulsos.

[editar] Periodo de semidesintegración radiactivaLa desintegración radiactiva sigue una ley de decaimiento exponencial:

N(t) = N0e − λt

donde

N(t) es el número de radionúclidos existentes en un instante de tiempo t.
N0 es el número de radionúclidos existentes en el instante inicial t = 0.
λ, llamada constante de desintegración radiactiva, es la probabilidad de desintegración por unidad de tiempo. A partir de la definición de actividad (ver Velocidad de desintegración) es inmediato ver que la constante de desintegración es el cociente entre el número de desintegraciones por segundo y el número de átomos radiactivos ().
Se llama tiempo de vida o tiempo de vida media de un radioisótopo al tiempo promedio de vida de un átomo radiactivo antes de desintegrarse. Es igual a la inversa de la constante de desintegración radiactiva ().

Al tiempo que transcurre hasta que la cantidad de núcleos radiactivos de un isótopo radiactivo se reduzca a la mitad de la cantidad inicial, se lo llama periodo de semidesintegración, período, semiperiodo, semivida o vida media (no confundir con tiempo de vida) (). Al fin de cada período la radiactividad se reduce a la mitad de la radiactividad inicial. Cada radioisótopo tiene un semiperiodo característico, en general diferente del de otros isótopos.

Ejemplos:

Isótopo Periodo Emisión
Uranio-238 4510 millones de años Alfa
Carbono-14 5730 años Beta
Cobalto-60 5,271 años Gamma
Radón-222 3,82 días Alfa

[editar] Velocidad de desintegraciónLa velocidad de desintegración o actividad radiactiva se mide en Bq, en el SI. Un becquerel vale 1 desintegración por segundo. También existen otras unidades como el rutherford, que equivale a 106 desintegraciones por segundo, o el curio, Ci, que equivale idénticamente a 3,7·1010 desintegraciones por segundo (unidad basada en la actividad de 1 g de 226Ra que es cercana a esa cantidad).

La velocidad de desintegración es la tasa de variación del número de núcleos radiactivos por unidad de tiempo:



Dada la ley de desintegración radiactiva que sigue N(t) (ver Periodo de demidesintegración) es inmediato ver que:



donde:

es la actividad radiactiva en el instante
es la actividad radiactiva inicial (cuando )
es la base de los logaritmos neperianos
es el tiempo transcurrido
es la constante de desintegración radiactiva, que es propia de cada radioisótopo
La actividad también puede expresarse en términos del número de núcleos a partir de su propia definición. En efecto:



[editar] Ley de la radiosensibilidadLa ley de la radiosensibilidad (también conocida como ley de Bergonie y Tribandeau) dice que los tejidos y órganos más sensibles a las radiaciones son los menos diferenciados y los que exhiben alta actividad reproductiva. Como ejemplo, tenemos:

1.Tejidos altamente radiosensibles: epitelio intestinal, órganos reproductivos (ovarios, testículos), médula ósea, gláundula tiroides.
2.Tejidos medianamente radiosensibles: tejido conectivo.
3.Tejidos poco radiosensibles: neuronas, hueso.
[editar] Consecuencias para la salud de la exposición a las radiaciones ionizantesLos efectos de la radiactividad sobre la salud son complejos. Dependen de la dosis absorbida por el organismo. Como no todas las radiaciones tienen la misma nocividad, se multiplica cada radiación absorbida por un coeficiente de ponderación, para tener en cuenta las diferencias. Esto se llama dosis equivalente, que se mide en sieverts, ya que el becquerel mide mal la peligrosidad de un elemento puesto que considera como idénticas los tres tipos de radiaciones (alfa, beta y gamma). Una radiación alfa o beta es relativamente poco peligrosa fuera del cuerpo. En cambio, es extremadamente peligrosa cuando se inhala. Por otro lado, las radiaciones gamma son siempre dañinas puesto que se les neutraliza con dificultad.

Véase también: Radiación ionizante
[editar] Riesgos para la saludEl riesgo para la salud no sólo depende de la intensidad de la radiación y la duración de la exposición, sino también del tipo de tejido afectado y de su capacidad de absorción, por ejemplo, los órganos reproductores son 20 veces más sensibles que la piel.

Véase también: Contaminación radiactiva
[editar] Dosis aceptable de irradiaciónHasta cierto punto, las radiaciones naturales (emitidas por el medio ambiente) son inofensivas. El promedio de tasa de dosis equivalente medida a nivel del mar es de 0,00012 mSv/h (0,012 mrem/h).

La dosis efectiva (suma de las dosis recibida desde el exterior del cuerpo y desde su interior) que se considera que empieza a producir efectos en el organismo de forma detectable es de 100 mSv (10 rem) en un periodo de 1 año.[1]

Los métodos de reducción de la dosis son: 1) Reducción del tiempo de exposición, 2) aumento del blindaje y 3) aumento de la distancia a la fuente radiante.

A modo de ejemplo, se muestran las tasas de dosis en la actualidad utilizadas en una central nuclear para establecer los límites de permanencia en cada zona, el personal que puede acceder a ellas y su señalización:

Zona Dosis
Zona gris o azul de 0,0025 a 0,0075 mSv/h
Zona verde de 0,0075 a 0,025 mSv/h
Zona amarilla de 0,025 a 1 mSv/h
Zona naranja de 1 a 100 mSv/h
Zona rojo > 100 mSv/h

[editar] Dosis efectiva permitidaLa dosis efectiva es la suma ponderada de dosis equivalentes en los tejidos y órganos del cuerpo procedentes de irradiaciones internas y externas. En la Unión Europea, la Directiva 96/29/EURATOM limita la dosis efectiva para trabajadores expuestos a 100 mSv durante un período de cinco años consecutivos, con una dosis efectiva máxima de 50 mSv en cualquier año, existiendo otros límites concretos de dosis equivalentes en determinadas zonas del cuerpo, como el cristalino, la piel o las extremidades, además de límites concretos para mujeres embarazadas o lactantes. Para miembros del público, el límite de dosis efectiva es de 1 mSv por año, aunque en circunstancias especiales puede permitirse un valor de dosis efectiva más elevado en un único año, siempre que no se sobrepasen 5 mSv en cinco años consecutivos.[2]

En el caso de intervenciones (emergencias radiológicas), sin embargo, estos límites no son aplicables. En su lugar se recomienda que, cuando pueden planificarse las acciones, se utilicen unos niveles de referencia. En estos casos las actuaciones comienzan cuando la dosis al público puede superar los 10 mSv en dos días (permanencia en edificios). En cuanto a los trabajadores se intentará que la dosis que reciban sea siempre inferior al límite anual, salvo en medidas urgentes (rescate de personas, situaciones que evitarían una dosis elevada a un gran número de personas, impedir situaciones catastróficas). En estos casos se intentará que no se supere el doble del límite de dosis en un solo año (100 mSv), excepto cuando se trate de salvar vidas, donde se pondrá empeño en mantener las dosis por debajo de 10 veces ese límite (500 mSv). Los trabajadores que participen en acciones que puedan alcanzar este nivel de 500 mSv deberán ser oportunamente informados y ser voluntarios.[3]

La dosis efectiva es una dosis acumulada. La exposición continua a las radiaciones ionizantes se considera a lo largo de un año, y tiene en cuenta factores de ponderación que dependen del órgano irradiado y del tipo de radiación de la que se trate.

La dosis efectiva permitida para un trabajador que trabaje con radiaciones ionizantes (por ejemplo en una central nuclear o en un centro médico) es de 100 mSv en un periodo de 5 años, no pudiendo superar en ningún caso los 50 mSv en un único año. Para las personas que no trabajan con radiaciones ionizantes este límite se fija en 1 mSv al año. Estos valores se establecen por encima del fondo natural (que en promedio es de 2,4 mSv al año en el mundo).

Las diferencias en los límites establecidos entre trabajadores y otras personas se deben a que los trabajadores reciben un beneficio directo por la existencia de la industria en la que trabajan, y por tanto, asumen un mayor riesgo que las personas que no reciben un beneficio directo.

Por ese motivo, se fijan para los estudiantes, unos límites algo superiores a los de las personas que no trabajan con radiaciones ionizantes pero algo inferior a las personas que trabajan con radiaciones ionizantes. Para ellos se fija un límite de 6 mSv en un año.

Además, esos límites se establecen en función de ciertas hipótesis, como es la del comportamiento lineal sin umbral de los efectos a la salud de las radiaciones ionizantes (el modelo LNT). A partir de este modelo, basado en medidas experimentales (de grandes grupos de personas expuestas a las radiaciones, como los supervivientes de Hiroshima y Nagasaki) de aparición de cánceres, se establecen límites de riesgo considerado aceptable consensuados con los organismos internacionales como el OIT, y a partir de esos límites se calcula la dosis efectiva resultante.

Véase también: Modelo lineal sin umbral
[editar] Ejemplos de isótopos radiactivos naturalesUranio 235U y 238U
Torio 234Th y 232Th
Radio 226Ra y 228Ra
Carbono 14C
Tritio 3H
Radón 222Rn
Potasio 40K
Polonio 210Po
[editar] Ejemplos de isótopos radiactivos artificialesPlutonio 239Pu y 241Pu
Curio 242Cm y 244Cm
Americio 241Am
Cesio 134Cs, 135Cs y 137Cs
Yodo 129I, 131I y 133I
Antimonio 125Sb
Rutenio 106Ru
Estroncio 90Sr
Criptón 85Kr y 89Kr
Selenio 75Se
Cobalto 60Co
Cloro 36Cl
[editar] Véase tambiénTeoría atómica
Rayos X
[editar] Referencias1.↑ Resumen del informe del BEIR (en inglés)
2.↑ Directiva 96/29/Euratom del Consejo de 13 de mayo de 1996 por la que se establecen las normas básicas relativas a la protección sanitaria de los trabajadores y de la población contra los riesgos que resultan de las radiaciones ionizantes, DO L159 de 29-6-1996.
3.↑ Normas Internacionales de Seguridad. SS Nº 115. (en inglés).
[editar] Enlaces externos Wikimedia Commons alberga contenido multimedia sobre Radiactividad.Commons
ATSDR en Español - ToxFAQs™: americio: Departamento de Salud y Servicios Humanos de EE.UU. (dominio público)
ATSDR en Español - ToxFAQs™: cesio: Departamento de Salud y Servicios Humanos de EE.UU. (dominio público)
ATSDR en Español - ToxFAQs™: plutonio: Departamento de Salud y Servicios Humanos de EE.UU. (dominio público)
ATSDR en Español - ToxFAQs™: uranio: Departamento de Salud y Servicios Humanos de EE.UU. (dominio público)
Obtenido de "http://es.wikipedia.org/wiki/Radiactividad"
Categorías: Exponenciales | Radiactividad.FUENTE:WIKIPEDIA.ORG